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Abstract

A well-established task in forensic writer identification
is the comparison of prototypical character shapes (allo-
graphs) present in the handwriting. Using elastic match-
ing techniques like Dynamic Time Warping (DTW), com-
parison results can be made that are plausible and under-
standable to the human expert. Since these techniques re-
quire the dynamics of the handwritten trace, the “online”
dynamic allograph trajectories need to be extracted from
the “offline” scanned documents. We have implemented
an algorithm that can automatically extract this informa-
tion from scanned images. The algorithm makes a list of
all possible trajectories. Using a number of traditional
techniques and DTW for evaluation, the best trajectory is
selected. To be able to make a quantitative assessment of
our techniques, rather than a qualitative discussion of a
small number of examples, we tested the performance on
two large datasets, one containing online and the other
containing offline data. Two different methods (one for
the online, and one for the offline dataset) are used to
validate the generated trajectories. The results of the ex-
periments show that DTW can significantly improve the
performance of trajectory extraction when compared to
traditional techniques.

Keywords: Trajectory extraction; Forensic writer iden-
tification; Allograph matching; Dynamic Time Warping.

1. Introduction

Forensic writer identification has been enjoying new
interest due to an increased need and effort to deal with
problems ranging from white-collar crime to terrorist
threats. Finding the identity of the writer of a document
is traditionally done by forensic handwriting experts, us-
ing methodologies like the ones described by Huber and
Headrick [5] and Morris [11]. Comparing a so-called
“questioned document” to a large database of handwrit-
ten documents is manual labor, which typically focuses
on the presence of particular allographs. If a certain set of
allographs occurs in both the questioned document and in
one of the documents in the database, they may have been
produced by the same writer.

The elastic matching technique Dynamic Time Warp-
ing [9, 12, 20] is very suitable for automating this appli-
cation, because it is able to match two allographs in a
human-congruous way [14] (i.e., the comparison yields
results that are visually convincing to the human ob-
server). The main practical objection to use this technique
is the fact that it uses online data to compare two allo-
graphs, when, most of the time, only scanned documents
(i.e., offline data), are available. One way of solving this is
by manually copy-drawing scanned images. Because this
can be very time consuming, the challenge is to perform
the extraction of dynamic information automatically.

Our current research, which is executed in the Trigraph
project [16], which aims at developing techniques to im-
prove the quality of writer identification systems available
today. The work presented here focuses on a method to
automatically extract the production order from scanned
images. Our technique creates a number of possible the-
ories about the production order, and automatically evalu-
ates them, to yield the correct one. We implemented an al-
gorithm for automatic trajectory extraction and a number
of traditional methods for evaluating those extracted tra-
jectories. We also explored the possibilities of using tra-
jectory matching techniques like DTW for evaluation of
the extracted trajectories. Starting point of this discussion
is that for each trajectory that is extracted from a handwrit-
ten character image, there must exist a prototypical allo-
graph that matches this trajectory. Given a proper set of
prototypes, it must thus be possible to make a correct eval-
uation of the extracted trajectory. This approach is partic-
ularly suitable for forensic document examination, which
relies heavily on the detection of particular allographs in
document databases for writer identification purposes.

To test whether DTW can indeed correctly evaluate
automatically extracted trajectories given a certain pro-
totype database, and to find out whether this approach
outperforms traditional methods, we conducted an exper-
iment that is described in this paper. As is shown, the
results indicate that trajectory matching can significantly
improve the quality of the selection of correctly extracted
trajectories. Given our findings that DTW is a technique
that yields results plausible to humans [14], this method
promises to be useful for forensic document examination.



In the next section, the trajectory extraction method
and verification methods are described. Subsequently, the
experiment we conducted to test the methods and its re-
sults are presented. This paper concludes with a discus-
sion and future research issues.

2. Trajectory extraction

Our trajectory extraction algorithm is based on the
algorithms described by Jäger [6] and Kato and Ya-
suhara [7]. The technique is restricted to single stroke
allographs (i.e., those characters for which the pen is not
lifted from the paper during writing) with identifiable be-
gin and end points (i.e., where the begin and end points
do not coincide with the stroke). Note that this differs
from [7], which is also restricted to characters with junc-
tions where no more than two lines intersect. Given a
pre-segmented handwritten character image, a number of
theories on the possible writing order are automatically
derived as described below.

2.1. Graph representation

The algorithm uses a graph representation of the origi-
nal image, generated through thinning and edge following.
This is a standard approach from which our implementa-
tion differs only in details. Three steps are performed in
the process:

(i) The scanned image is binarized and thinned, result-
ing in a skeleton image. For skeletonization of the bi-
narized image, we employed the technique described by
Huang, Wan and Liu [4].

(ii) Clusters of pixels are detected at the start or end
of a stroke or at points where two or more lines inter-
sect. A cluster is defined as a set of 8-neighboring pix-
els that each have either only one 8-neighbor or that have
more than two 8-neighbors. Two cluster types are distin-
guished: (I) boundary clusters, i.e., clusters that have one
connected line (these are candidates for the start and end
point of the trajectory) and (II) junction clusters, i.e., clus-
ters that have more than two connecting lines (these are
clusters where two or more lines intersect). Clusters that
have two connecting lines are deleted, since such cases
are most probably caused by ink blobs within strokes, and
do not represent positions where the writing direction was
changed. Figure 1 depicts an example image, and the de-
tected clusters.

(iii) A graph is constructed based on the detected clus-
ters and their connecting lines. Clusters are represented by
nodes, and lines by edges. See Figure 1 for an example.

2.2. Theory creation

Based on the graph representation created in the pre-
vious step, a graph traversal algorithm generates a list of
theories containing possible trajectories. Theories are rep-
resented by an ordered list of edge numbers, such as the
one illustrated in Figure 1. Each theory corresponds to a
trajectory that is determined by following the coordinates
of the pixels in the skeleton image, in the order that is

Figure 1. Graph representation: The top figure de-
picts the original image. The bottom left figure shows
the clusters that were found in that image. The bot-
tom right figure shows the graph representation of
the image. Each node and each directional edge
have unique identification numbers. Nodes 0 and 5
are boundary nodes, and all other nodes are junction
nodes. The correct theory here is 1, 3, 4, 2, 13, 6, 11,
7, 9.

represented by the theory. For a theory to be valid, the
following conditions need to be satisfied:

(i) The starting point of the first edge and the ending
point of the last edge should be boundary clusters (we sup-
pose that the starting point and ending point of the trajec-
tory are at boundary clusters).

(ii) The theory should at least contain one of the two
direction edges of each edge, to make sure that all the line
segments in the image are part of the theory.

(iii) Each direction edge can only occur in a theory
once, i.e., we suppose that every edge is traced no more
than two times (one time in both directions).

(iv) Each edge representing a loop (i.e., connecting a
node to itself) can be traced only once (combined with the
second condition, this means that either one of the two
directions is traced, and the other is not).

We use two different approaches to create theories. In
the first one, which we call the brute force-approach, an
exhaustive search is executed to generate every possible
theory. These theories are then evaluated using four dis-
tinct evaluation methods. Using these methods, the most
suitable theory and corresponding trajectory can be found.
However, as argued in [7], for more complex characters
and words, this exhaustive approach becomes computa-
tionally less attractive. Therefore, in the second approach,
which we call the ideal path-approach, a preselection of



theories is made during the search. Starting at a boundary
cluster, at each junction, those paths that differ too much
from the straightest path are not followed. This results
in a decrease of the number of theories, and therefore a
decrease in computational complexity. Especially when
extracting dynamic information from complex characters,
other alphabets, like the Tamil alphabet [13], bigrams,
trigrams, or even complete words, this can reduce the
amount of required computing power dramatically. The
two approaches that we use are described in more detail
below.

2.2.1. Brute force-approach

This method examines every possible theory. For each
theory, the corresponding trajectory was evaluated by four
different evaluation methods:

(i) Trajectory length: Sum of the Euclidian distances
between each pair of succeeding pixels.

(ii) Average curvature: Average angle between each
triplet of succeeding pixels.

(iii) Local curvature: Average curvature in the tra-
versed junction clusters. This is calculated by concate-
nating the trajectory segments corresponding with the in-
going and outgoing edges at each junction cluster, limit-
ing the result by finding the minimum and maximum y-
coordinate (i.e., creating one stroke), spatially resampling
the stroke to 30 points [18] to avoid the effects of curvature
quantization [17], and computing the average curvature in
the resampled stroke (using the method described above).
The local average curvatures at the junction clusters are
then averaged by dividing them by the total number of
junction clusters traversed in the theory (see Figure 2).

Figure 2. Example of local curvature. The local cur-
vature of the dark trajectory segments is based on
the stroke that is created by concatenating the seg-
ments, limiting the result by finding the minimum and
maximum y-coordinate and spatially resampling the
stroke to 30 points.

(iv) Smallest DTW distance: A trajectory is matched
to the prototypes from the Mergesamples prototype set,
which was created by semi-automatic clustering of a large
database [12, 14]. The smallest distance, indicating how
similar the trajectory is to the most similar prototype, is
used. Note that the trajectory is only matched to those
prototypes that represent the character that is also repre-
sented by the trajectory (e.g., if the sample represents an
a, only the a-prototypes are considered). This restriction
can be justified if one considers that in our application,

forensic experts search for particular characters like “give
me this particular <a>”.

2.2.2. Ideal path-approach

To limit the number of possible theories, a number of
suggestions are made in the literature to exploit local in-
formation. In general, these try to minimize directional
changes or employ local curvature [17]. In [7], graph
traversal is ruled by an algorithm that opts for the mid-
dle edge at branches, but which is therefore restricted to
junctions with no more than two crossing lines. In our
approach, local curvature information is employed to con-
struct a theory. At each junction that is traversed, it is de-
cided which edge is the best to continue with. To decide
this, the local curvature between the incoming edge and
each of the outgoing edges is calculated using the local
curvature-method described in Section 2.2.1. The outgo-
ing edge that yields the lowest local curvature is chosen.
This is repeated until a valid theory is created.

3. Trajectory validation

To compare the quality of the four evaluation meth-
ods described in Section 2.2.1, we conducted an experi-
ment in which images were offered to the algorithm. The
images we used were taken from two different databases:
one containing online and the other containing offline im-
ages. The brute force-approach was used to generate all
possible trajectories. Each of those trajectories was eval-
uated by each evaluation method. Using validation tech-
niques described later in this section, we decided which of
the extracted trajectories was the correct one. Given this
information, we were able to assess how well each evalu-
ation method was able to select the correct trajectory.

3.1. Validation approaches

The challenge was to find a way to validate the created
trajectories, i.e., to decide which of the trajectories was the
correct one. A number of methods to validate extracted
trajectories are mentioned in the literature. An indirect
method is proposed by Lallican et al. [10]. They validated
the results of their trajectory extraction algorithm by com-
paring the word recognition performance for the extracted
trajectories and for the original online data that was avail-
able as well.

A direct validation can be performed manually, by
comparing a resulting trajectory to its corresponding
“ground truth”. For example, Kato and Yasuhara [7] veri-
fied their results by displaying an animated pencil that fol-
lows the trajectory that has been produced by their algo-
rithm and by using different colors to distinguish between
single-traced and double-traced strokes. Boccignone et
al. [1] also verified their results manually.

However, with relatively large amounts of data, vi-
sual inspection becomes a practical problem. If, on the
other hand, the ground truth of each sample is available,
automatic validation becomes possible. For example, if
the offline and online signals were recorded simultane-



ously during data acquisition, both a scanned image and
the trajectory actually produced are available to the sys-
tem. Unfortunately it is not possible to make a direct
one-to-one match between the two signals, as is described
by Franke [2]: When superimposing online pen trajecto-
ries and offline ink traces, variations in pen-tilt and pen-
azimuth, which occur in human handwriting, cause dif-
ferent displacements in the captured online signal. This
problem can be solved, however, using an elastic match-
ing technique like DTW to create a match between the two
signals, as is described below.

3.2. Method

3.2.1. Online

Two different data sets were used in the experi-
ment [15]. The first set contained online data. We ran-
domly selected 3370 samples that satisfied the conditions
described in Section 2 from the characters in the UNIPEN
v07 r01-trainset [3]. 16.5% were digits, 46.8% were low-
ercase and 36.6% were uppercase letters. A test data set of
this size allows for a quantitative assessment of our tech-
niques, an approach that is still fairly unknown.

Using the Bresenham line generator, we created im-
ages with a pixel width of 1 that were offered to the trajec-
tory extraction algorithm. The binarization and thinning
steps were skipped. With both the image and the ground
truth available, we were able to use a method based on the
one described by Jäger [6]. The trajectories extracted from
the images were mapped onto the ground truth by check-
ing whether each pixel in the extracted trajectory was also
present in the ground truth and whether the order in which
they occurred was the same. The trajectory in which both
conditions were satisfied was marked as the correct one.

3.2.2. Offline

The second set contained offline data. We manually
selected 1231 samples from the Firemaker data set [19],
using a tool that allowed a handwriting expert to mark
characters that satisfied the conditions described in Sec-
tion 2. 6.2% of the selected samples were digits, 84.1%
were lowercase and 9.7% were uppercase letters.

It is well known that binarization and thinning algo-
rithms can introduce artefacts like the ones depicted in
Figure 3. Small loops and hooks at positions where two
lines cross or where ink blobs are present, can cause edges
to appear in the graph that do not exist in the original sam-
ple. Because our algorithm requires that all edges are vis-
ited in each theory (see Section 2.2), samples containing
such spurious edges (which the ground truth does not con-
tain), will cause our algorithm to fail in extracting the cor-
rect trajectory. Since the focus of this paper is on the val-
idation of trajectories, given that the correct trajectory is
extracted, we decided to remove those cases in which the
introduced artefacts would prohibit the algorithm to find
the correct trajectory. This was done by visual inspection.

To be able to validate the extracted trajectories, we let
human handwriting experts manually copy-draw the data,

Figure 3. Examples of original images (left) and arte-
facts created by binarization and thinning (right). The
small loops that were introduced cause the algorithm
to fail in finding the correct trajectory. Samples like
these were removed from the data set.

using a Wacom Cintiq 15X writing tablet (a tablet that al-
lows the user to directly interact with a pen on the screen,
and therefore create very accurate dynamic copies of the
images presented). Finally, the extracted trajectories were
matched to the corresponding copy-drawn trajectory using
DTW. The trajectory with the lowest DTW-distance to the
copy-drawn ground truth was selected as being the correct
one.

The assumption underlying this method is that for each
sample, the correct theory is indeed generated by the al-
gorithm. If it is not, DTW will mark the most similar, but
possibly incorrect, trajectory as being correct. To ensure
that these cases would not occur, we manually inspected
the data in which the DTW-distance between the ground
truth and the most similar trajectory was higher than a cer-
tain threshold (i.e., if the theory marked as correct differed
too much from the ground truth), or if the difference be-
tween the DTW-distances of different theories was below
another threshold (i.e., if the DTW-measure was not suffi-
ciently able to distinguish between different theories, for
example in cases where small details differed). Since no
problem cases were found, we conclude that the assump-
tion is valid.

3.3. Results

From the trajectories extracted from each sample, four
ranked lists, sorted on the different evaluation measures
were created. Table 3.3 depicts, for each method, the rel-
ative number of samples for which the correct trajectory
was found within the top-n positions in the ranking lists.

From these results, it can be concluded that DTW out-
performs the other methods. The differences between the
traditional methods and DTW are strongly significant for
the top-1, top-2, and top-3 rankings. The relatively low
top-1 performance of the other methods can be explained
by the fact that when using them, the system is not able to
distinguish between the same trajectory followed in two
different directions, since their values are the same.

A closer examination of the cases in which DTW fails
(see Figure 4) reveals that most errors are caused by mis-



Table 1. Top-n performance (the fraction of cases
where the correct result is among the n best theo-
ries) of the different evaluation methods for the online
(“on”) and offline (“off”) data set. The performance is
presented for length, average curvature, local curva-
ture, and Dynamic Time Warping.

top Length Average Local DTW
n curvature curvature

on off on off on off on off

1 72 72 73 61 75 61 86 93
2 82 74 85 64 84 76 96 98
3 92 92 90 78 89 84 96 99
4 93 92 94 79 92 90 97 99
5 96 98 95 92 94 93 98 100

sing details in the best matching prototypes, in particular
the occurrence of small loops. These cases form the ma-
jority of errors and are caused by the fact that each proto-
type is the result of an “averaging” procedure [12]. A few
errors are attributed to the occurrence of hooks at the start
or beginning of a character and to samples in which the
writer produced a character shape in a direction that was
not covered by the prototype database. If the prototype
that is most similar to a specific trajectory lacks a certain
detail that is present in the trajectory, the DTW-technique
may not be able to make a correct judgment about that de-
tail. In the case of the “h” and the “n” in Figure 4, the most
similar prototype does not contain loops, and DTW, there-
fore, cannot detect the right direction of the loops in the
extracted trajectories. In the case of the “d”, the allograph
was started in the middle and finished at the top. However,
the prototype in the database that was most similar to the
image, was traced the other way. DTW was therefore not
able to detect the right direction. In the case of the “l”, the
most similar prototype in the database was a straight line
from top to bottom. The best way to match this prototype
to the sample, was by starting at the top, double tracing
the small “hook” on the right, and continuing to the bot-
tom, while the allograph was actually started at the hook,
after which the top piece was double traced, and the trace
was continued to the bottom.

As described in Section 3.2.2, cases that caused thin-
ning and binarization problems were removed from the
offline data set. In some of removed cases, small loops,
similar to those depicted in Figure 4, caused the problems.
If they had been thinned correctly, some cases would prob-
ably have caused the DTW-method to fail in selecting the
correct trajectory. The DTW-results mentioned should
therefore be interpreted as an upper boundary. This holds
particularly for the results for the offline data.

4. Conclusions

In this paper, we have argued that the use of large data
sets allows for a quantitative assessment of trajectory ex-
traction technologies, an approach that is still fairly un-
known. Our results show that, when compared to tra-

Figure 4. Examples of cases where DTW does not
select the correct trajectory. The images on the left
are the samples, the images on the right are the near-
est prototypes according to DTW. The black dot indi-
cates the starting point of the prototype.

ditional techniques, DTW can significantly improve the
quality of trajectory extraction. However, it is well known
that DTW is computationally expensive, and can only be
applied to fully extracted trajectories (i.e., it cannot be
used for local decisions during the trajectory extraction
phase). Also, in cases where samples are not covered
by the prototype database, it may select the wrong tra-
jectory as the best one. Preliminary tests show that a
combination of the ideal path-approach (i.e., using local
curvature information to generate only a limited number
of trajectories) and the DTW measure could solve both
problems. Experiments to test the validity of these re-



sults are currently being conducted. With a lower demand
for computing power, the automatic extraction of trajecto-
ries from multi stroke characters, complex characters, or
even words also will become a practical possibility. Ex-
ploration of these possibilities is also part of our current
research.

In the Trigraph project [16], we are currently pur-
suing the development of a taxonomy of the allograph
shapes that are present in different handwriting databases.
Knowledge of forensic handwriting experts is used to cre-
ate a list of the most prominent shape categories that oc-
cur. Furthermore, automated techniques, like hierarchical
clustering [21], are used to reveal statistical information
about the frequency of occurrence of these shapes. This
combination of top down expert knowledge and bottom
up pattern recognition is expected to improve the proto-
type sets employed and thus improve the results of DTW
as an evaluation method for extracted trajectories.

To extend the practical possibilities of our algorithm,
we need to improve the quality of the binarization and
thinning steps, so that artefacts causing the algorithm to
fail may be eliminated. Using more advanced techniques
like, for example, the piecewise linear skeletonization al-
gorithm described by Kégl and Krzyżak [8], we hope to
increase the quality of the preprocessing steps to such an
extent that the system can be used in practice.

One of the advantages of using DTW is that, if a cer-
tain prototype is in the database, DTW provides an excel-
lent basis for retrieving particular allographs that corre-
spond to that prototype. Given the fact that DTW is able
to create a human-congruous or “intuitive” match between
handwritten characters [14], we can conclude that using
DTW is a promising way to achieve the goal of our study:
To develop techniques through which forensic experts can
search for the occurrence of characters with a particular
shape in a database of documents. To decrease the amount
of computational power needed for DTW, we intend to
employ our techniques for the batch-wise indexing of the
databases that are used by DTW. Querying for the occur-
rence of particular allographs will then boil down to the
comparison of the query characters to the set of proto-
types and using the labels of the best-matching prototypes
to search in the pre-indexed databases.

References
[1] G. Boccignone, A. Chianese, L. Cordella, and A. Marcelli.

Recovering dynamic information from static handwriting.
Pattern Recognition, 26(3):409–418, 2003.

[2] K. Franke. The influence of Physical and Biomechani-
cal Processes on the Ink Trace. PhD thesis, University of
Groningen, 2005.

[3] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and
S. Janet. UNIPEN project of on-line data exchange and
recognizer benchmarks. In Proc. ICPR’94, pages 29–33,
Oct. 1994.

[4] L. Huang, G. Wan, and C. Liu. An improved parallel thin-
ning algorithm. In Proc. 7th Int. Conf. Document Analy-
sis and Recogn., pages 780–783, Edinburgh, 2003. IEEE
Computer Society.

[5] R. Huber and A. Headrick. Handwriting identification:
facts and fundamentals. CRC Press, Boca Raton, Florida,
1999.

[6] S. Jäger. Recovering dynamic information from static,
handwritten word images. PhD thesis, Daimler-Benz AG
Research and Technology, 1998.

[7] Y. Kato and M. Yasuhara. Recovery of drawing order from
single-stroke handwriting images. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 22(9):938–949, 2000.
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