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Abstract

This paper describes a semi-automated procedure
for the verification of a large human-labeled data set
containing online handwriting. A number of classifiers
trained on the UNIPEN “trainset” is employed for de-
tecting anomalies in the labels of the UNIPEN “devset”.
Multiple classifiers with different feature sets are used
to increase the robustness of the automated procedure
and to ensure that the number of false accepts is kept
to a minimum. The rejected samples are manually cat-
egorized into four classes: (i) recoverable segmenta-
tion errors, (ii) incorrect (recoverable) labels, (iii) well-
segmented but ambiguous cases and (iv) unrecoverable
segments that should be removed. As a result of the ver-
ification procedure, a well-labeled data set is currently
being generated, which will be made available to the
handwriting recognition community.

1. Introduction

In a large collaborative effort, a wide number of
research institutes and industry have generated the
UNIPEN standard and database [2]. Originally hosted
by NIST, the data was divided into two distributions,
dubbed the trainset and devset. Since 1999, the Inter-
national UNIPEN Foundation (iUF) hosts the data, with
the goal to safeguard the distribution of the trainset and
to promote the use of online handwriting in research and
applications. In the last years, dozens of researchers
have used the trainset and described experimental per-
formance results. Many researchers have reported well
established research with proper recognition rates, but
all applied some particular configuration of the data. In
most cases the data were decomposed, using some spe-
cific procedure, into three subsets for training, testing
and validation. Therefore, although the same source of
data was used, recognition results can not really be com-

pared as different decomposition techniques were em-
ployed. Furthermore, in most reported cases, a particu-
lar set of badly segmented or wrongly labeled data was
removed or changed, which makes the comparison of re-
sults even more difficult.
For some time now, it has been the goal of the iUF to or-
ganize a benchmark on the remaining data set, the dev-
set. Although the devset is available to some of the orig-
inal contributors to UNIPEN, it has not officially been
released to a broad audience yet. It is the goal of our
current paper to describe the procedure for verifying the
devset, i.e. validating and correcting the data. This pro-
cedure should ensure the quality of a proper new bench-
mark data set, to be made available to the global hand-
writing recognition community. The original UNIPEN
devset is organized in 9 sets (Table 1).

set nfiles nsamples description
1a 508 8598 isolated digits
1b 1087 16414 isolated upper case
1c 1672 37506 isolated lower case
1d 973 9898 isolated symbols
2 2144 72416 characters (mixed)
3 1267 44416 characters (word context)
6 2072 46353 words (cursive or mixed)
7 2143 52700 words (any style)
8 3592 11059 text (

�
two words)

total 15458 299360

Table 1. UNIPEN devset organization. Sets
4 and 5 (isolated printed words) are empty
in both the trainset and devset.

It is known that labeling and segmentation errors are
present in both UNIPEN sets. An estimate of the number
of errors in the trainset is given in [3]. It was reported
that approximately 4% of the samples are errors. Other
errors occurring in both sets are described in, e.g., [1, 7],
reporting about segmentation errors, and in [4] and [5],
reporting about segments that were obviously too wide
or too narrow. In a recent effort made by Ratzlaff [5],



scripts were generated that divide the data into config-
urable train and evaluation sets1 and which can be used
to generate uniform subsets for UNIPEN benchmarks
that are comparable between researchers. However, a
number of segmentation errors still remains in the data
and moreover, the scripts do not check on labeling er-
rors.

The focus of this paper is to report on the qual-
ity of the UNIPEN data by examining the observed
and detected errors in detail. To this end, a semi-
automated procedure is described that distinguishes be-
tween a number of sample categories. The first step of
this process is automated. A number of classifiers are
combined to increase the confidence in cases where sam-
ples may be accepted. In the second step, the rejected
samples are manually verified. As a result of this pro-
cedure, the following classes of samples are produced,
where all but the first category require human supervi-
sion:

1) Correct segments, containing samples that are ac-
cepted with sufficient confidence by the procedure. This
category is not further inspected. In the next section it
is explained how it is ensured that the amount of errors
that slip through the automated selection process can be
minimized.

2) Segmentation errors, containing samples that are
badly segmented. In UNIPEN, segmentations are spec-
ified through a so-called delineation, which marks the
beginning and end of a sample (also called segment).
Segmentation errors are caused by wrong delineations.
In some cases these errors can be recovered, which is
explained in Section 3.

3) Labeling errors, containing samples with wrong
labels. Such errors may be caused by the writer produc-
ing the samples or by the human labeler, who may have
interpreted the handwriting incorrectly. There is a fuzzy
line between obvious labeling errors and cases where the
label cannot be determined because of sloppy handwrit-
ing, or because the shape of a sample is ambiguous.

4) Ambiguous samples, containing shapes that can be
interpreted in at least two ways. Most often, such shapes
cannot be interpreted without context.

5) Unfamiliar samples, containing allographs that
are unfamiliar to a classifier or human expert. Such sam-
ples typically are encountered in multi-lingual databases
or databases with writers from different origin, as is the
case in UNIPEN.

Figure 1 displays some examples from the latter four
categories. The first row depicts samples with a proper
label, but that have a poor quality, because of sloppy
handwriting. In UNIPEN, such samples would be la-

1These scripts are made available through
www.alphaworks.ibm.com/tech/comparehwr

beled as having a BAD quality. Rows 2,3,4 in Figure
1 depict problems of actual mislabeling, erroneous seg-
mentation and interpretation ambiguity, respectively.
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Figure 1. Problematic cases in UNIPEN
data.

There is a particular note to be made on the first and
last categories, containing samples with inferior quality
or which are ambiguous. There are examples of other,
well-segmented and labeled data sets that are used for
training and testing handwriting recognizers, yielding
high recognition rates. Although it is valid to report
such results in literature, it also leads to systems that
fail in real-life conditions. Rather than removing such
bad samples, we opt for leaving them in the database
and label the quality as BAD, or as a more suitable cat-
egory like INFERIOR or AMBIGUOUS. The latter two
qualifications are not contained in the current UNIPEN
definition, however.

The verification procedure that is described in this pa-
per has been completed for the first three character sets
(1a,1b,1c) and is currently being applied on the remain-
ing sets. Results for these character sets are presented
here and the preliminary set up of the verification pro-
cedure for word and text segments is discussed as well.
In the next section, Section 2, the automated verifica-
tion procedure for accepting or rejecting samples is dis-
cussed. Any samples that are rejected must be visually
inspected. This process is described in Section 3. The
procedure for verifying word and text segments is de-
scribed in Section 4.

2. The automated verification procedure

The requirements for the verification procedure are
straightforward: The first requirement is that the number
of accepted samples (the yield) should be maximized.



This reduces the laborious amount of manual verifica-
tion and correction. The second requirement is that the
amount of errors should be kept to a minimum. It is our
goal to reduce the amount of errors in the data signifi-
cantly below 1%. In the verification procedure, two pa-
rameters rule the yield and error quantities: (i) the qual-
ity and amount of the classifiers and (ii) the way in which
the output hypotheses from multiple classifiers are com-
bined for accepting or rejecting a sample.

2.1. Quality of the accepted samples

Given a division of samples in two categories: the ac-
cepted and rejected samples, a test can be performed to
assess (with a certain significance � ) whether the num-
ber of errors that may be expected in the accepted sam-
ples is below a certain fraction � . The test says that if no
errors are observed in a randomly drawn subset of

�
ac-

cepted cases, it is valid to assume that the error fraction
is below � with confidence ����� . Let the probability
of drawing an erroneous sample � from this pool be �	� ,
which equals � for all samples if samples are drawn with
replacement. In this case, the total probability of detect-
ing no errors in the subset is defined as:

��
 ����� ����� ��� 
 � ����� � 
So, in order to be certain with a probability � that

only a fraction of � errors occur in the data, it has to
be verified that

�
randomly drawn samples contain no

errors, with:

� 
 �����������! #" � � � (1)

An event is usually considered as statistically signif-
icant, if the probability of the event occurring randomly
is smaller than 5% (or a stricter 1%). Here, the event is
“no errors in the subset of

�
samples”. It is our goal to

ensure with significance �$
�%'& %'� that maximally 1% of
the accepted samples are errors and therefore, we must
visually verify that no errors occur in

� 
�(*),+ samples.
Note that neither � nor � can reach 0% with this test.
Also note that this test does not use any information on
how the accepted set was constructed. This would re-
quire an intricate knowledge of the behavior of the clas-
sifiers and their interdependency, which is beyond the
scope of this research.

2.2. Quality and amount of classifiers employed

In this subsection, the quality and yield of the em-
ployed individual classifiers for character verification
are discussed. Four different classifiers are used, trained
on data from the UNIPEN trainset. The trainset and

devset comprise distinct samples, but do not distinguish
between writers. This makes classifiers trained on the
first set very suitable for recognizing the latter set, as it
may be expected that samples from the training set do
not differ to a large extent. Different feature schemes
are being employed, describing spatial-temporal (trajec-
tory, running angle, angular velocity) characteristics and
spatial (bitmap) characteristics. All four classifiers were
trained on the 1a, 1b and 1c sets of the UNIPEN trainset,
from which 36130 digits, 65483 isolated upper case, and
157264 isolated lower case segments where extracted. A
multi-layered perceptron (MLP) using these features, a
knn classifier (k=5) with the same features, the DTW
(dynamic time warping) algorithm described in [8], and
the allograph matcher “HCLUS” as described in [9]
were used for classifying the three sets 1a, 1b and 1c
from the devset. The knn classifier matches each of the
devset samples to the training samples from the corre-
sponding set. Although it uses the same feature vector as
the MLP, the completely different knn, DTW, and MLP
algorithms ensure a distinct view on the data.

set 1a set 1b set 1c
Classifier Y #E Y #E Y #E
MLP(0) 94.3 3 87.5 2 87.1 1
MLP(.7) 90.6 2 86.4 1 74.7 1
MLP(.8) 84.4 1 76.4 1 66.4 1
MLP(.9) 60.3 none 55.1 none 51.0 none
DTW(1) 85.8 3 92.9 none 81.9 none
DTW(2) 91.6 1 83.5 1 78.5 1
DTW(3) 88.3 1 77.2 2 71.5 1
DTW(4) 83.1 none 66.6 1 61.3 none
DTW(5) 72.9 none 49.4 none 45.1 none

Table 2. Yield (percentage) and errors for
the MLP and DTW algorithms. Similar re-
sults are produced by the other two clas-
sifiers for the thresholds 1. . . 5.

All four classifiers can use an individual threshold
for deciding to accept or reject samples. Each classi-
fier only accepts samples if two conditions hold: (i) the
threshold is passed and (ii) the output of each classifier
corresponds to the label of the original devset. All other
cases are rejected. Table 2 depicts the typical yield for
two classifiers, given a certain threshold, for the devset.
In case of the multi-layered perceptron, -/.10 ��2 � corre-
sponds to the percentage of accepted samples where the
activation of the best output unit passes 2 . In case of the
latter three classifiers, respectively 3 �4� �!5 � , 687:9 �!5 �
and ;4<=.?>A@ �!5 � represent the percentage of accepted
samples for which the 5 closest neighbors are correct.
For each individual classifier, a randomly drawn set of

�



reference samples was selected to be visually inspected.
The column ”errors” indicates the number of errors de-
tected in the accepted samples from a particular classi-
fier, for a given threshold.

2.3. Increasing the yield while passing the test

As can be observed in Table 2, in very strict settings
each classifier is able to pass the test. However, this is at
the cost of rejecting a large amount of samples. There-
fore, a number of different combination schemes were
evaluated that increase the yield, while still passing the
test. The assumption is that when a particular number
of classifiers accept a sample (i.e. mutually agree on the
outcome, which equals the label), this can be consid-
ered as a success. All classifiers are treated equal in this
procedure. Below, different yields for respectively one,
two, three, or four classifiers that agree on each sample
in the devset are listed. Numbers that are marked with a
’(y)’ did pass the test.

nc yield 1a yield 1b yield 1c
4 90.5(y) 59.3(y) 57.5(y)

3 91.4(y) 83.4(y) 81.1(y)

2 95.6 91.1(y) 89.8(y)

1 98.2 96.1 95.2

Table 3. Yield and results on passing the
tests for cases where ��� classifiers must
agree.

When comparing these results to Table 2, it can be
observed that the yield is much higher in the case of
combining classifiers than when using individual (strict)
threshold values. At the same time, even with combina-
tions of only two out of four classifiers, all tests (except
in the case of digits) are passed. This is an excellent ex-
ample of using multiple classifiers for increasing the ro-
bustness of pattern recognition. Rather than increasing
the decision threshold, the different views on the data
ensure that only samples are accepted when two or more
distinct observations agree.

The 1a, 1b and 1c sets from the devset were automat-
ically divided in two categories (accepted and rejected)
by using the marked combinations from Table 3. After
this first step of the procedure, respectively 7858 (1a),
14952 (1b) and 33671 (1c) samples are accepted, where
it is assumed that these samples contain less than 1%
errors, i.e. samples that should have been rejected.

2.4. Verification of the procedure

In order to verify the correctness of the procedure,
a major effort was performed by manually verifying all
processed segments from the 1a, 1b and 1c sets. For
each data set, the original data were split into multiple
files, each file containing the data for only a single label
type. So, for example, the digits set (1a) was split into
ten files, one for each of the digits 0-9. The data were
then displayed 100 at a time in a 10x10 grid. This allows
for rapid review of the data for verification purposes. It
also provides a context for reviewing a single writers
work as a group, and for viewing and comparing several
writing styles at the same time. This sorted and multiple
view context is especially helpful to discern between la-
beling errors, sloppy instances of a particular allograph,
and for discovering unusual allographs or writing styles
that might otherwise be evaluated as bad or mislabeled.
The data are then evaluated and appropriately assigned.

This manual verification process was performed in-
dependently of the manual labeling process described
in the next section. Based on the completely verified
data set, it is possible to assess the correctness of the
assumption made in Equation 1. This assessment was
performed by comparing the set of samples that were
judged as erroneous by the manual verification process,
to the set of samples that were automatically accepted by
the procedure described above. As a result of this com-
parison, no samples that were accepted for 1a appeared
to have errors. Only 0.061% falsely accepted samples
from the 1b set appeared to have slipped through and
for the 1c set, this number was less than 0.064%. These
numbers indicate that although statistically, the number
of automatically accepted samples contain less than 1%
errors, the real (validated) estimates are much better.

3. The manual labeling process

All samples that were rejected in the previous pro-
cess are candidates for errors. Although the majority
of these samples are probably correct (as only 4% er-
rors were expected [3] and about 10% of the samples
are rejected), they must be verified through human su-
pervision. Here, three main categories of interactive op-
erations have to be performed: (i) marking false rejects,
i.e. samples that were rejected by the ensemble but that
were judged as correctly labeled after visual inspection,
(ii) correcting wrong labels, i.e. samples that were cor-
rectly rejected and should definitely be labeled differ-
ently, and (iii) correcting wrong segmentations, i.e. sam-
ples that could not be accepted because they were badly
segmented. Please note that as indicated in the intro-
duction, labels and segmentations in any of these cate-



gories may be distinguished in various levels of quality
(sloppiness) and confidence (depending on ambiguity or
familiarity of the allographs).

For each collection (1a, 1b, and 1c) of the UNIPEN
devset, the appropriate ensemble of classifiers was used
to filter out samples that could not be recognized with
sufficient confidence. These samples were alphabeti-
cally sorted and displayed via the UNIPEN displayer
upview. Upview is a program for fast visualization of
large amounts of UNIPEN data. Similar to the viewer
described in Section 2.4, upview depicts segments in
a matrix organization. Specific routines for processing
particular samples can be engaged by clicking on the
corresponding segment. If one of the three kinds of in-
teractive operations mentioned above should be applied
to a segment, the human verifier can click on the seg-
ment by using either the left, middle or right button of
his mouse. Correcting falsely rejected samples (the ma-
jority of cases) can be performed very efficiently in this
manner. As samples were depicted in alphabetical order,
anomalies can be detected fast.

Correcting false rejects Upon manually overriding
the rejected samples, two options were made available
to the supervisor. The first option marks the segment
as correctly labeled, but with a proper quality. In the
second option, the segment is still marked as correctly
labeled, but the quality is labeled bad. The latter option
is typically in place for the samples depicted in the first
row of Figure 1.

Correcting wrong labels Similar to the cases where
rejected samples had to be accepted, labeling errors can
be distinguished in two categories: wrong labels with
bad quality and wrong labels with good quality.

Marking segmentation errors Segmentation errors
that can be visually detected, are marked as recoverable
and stored for a later correction process using an inter-
active segmentation tool.

Handling undecidable errors The former three cases
can be identified through careful examination of the de-
picted segments using Upview. However, as depicted in
Figure 1, some cases cannot be determined as they ei-
ther contain segmentation errors or ambiguous shapes.
These cases are marked as undecidable and are stored
for further processing, for which the upworks tools
contained in the uptools distribution2 are employed.

Two human handwriting experts performed the man-
ual labeling process described above. As the results de-
picted in Table 4 show, it appears that many samples
provide causes for uncertainty. The main reason for this
uncertainty is that judging the quality of a handwriting
sample is a subjective process. Judgments on quality
(i.e., when is a sample too sloppy or not, allograph fa-

2See http://www.unipen.org/uptools3

miliarity (is the label correct, is the shape ambiguous?),
and even segmentation errors are examples of subjective
decisions.

set 1a set 1b set 1c
category both A B both A B both A B
L=OK, Q=OK 348 27 160 507 163 67 1962 664 266
L=OK, Q=BAD 46 204 18 42 60 180 291 240 680
L=W, Q=OK 6 4 7 20 36 15 78 296 23
L=W, Q=BAD 0 5 5 7 14 11 11 12 160
SE 95 3 43 554 48 49 258 8 90
U 0 2 12 8 3 2 4 11 12

Table 4. Manual categorization of rejected
samples by two handwriting experts ’A’
and ’B’. Judgments were made between
correct (L=OK) and wrong (L=W) labels,
good (Q=OK) and bad (Q=BAD quality, seg-
mentation errors (SE) and undecidable (U)
cases. The columns labeled “A” and “B”
indicate judgments made by a single ex-
pert. Columns marked “both” list the num-
ber of cases in which both experts agree.

Estimating a lower bound on the number of correctly
accepted samples in the original 1a, 1b and 1c sets can
be performed by adding the number of overruled sam-
ples on which both experts agree (categories 1 and 2 in
Table 4) to the number of samples accepted in the au-
tomated verification step described in Section 2. As the
latter is guaranteed to have maximally 1% errors, it can
be deduced that the maximum percentage of errors in
the original sets is respectively 3.0 (1a), 4.5 (1b) and 3.2
(1c).

The sixth category (undecidable) as well as all cases
where both experts do not agree are stored for subse-
quent processing, either using more context (e.g. con-
sidering the surrounding coordinate trajectories) or dis-
cussing these cases with further experts. However, as
may be concluded at this point, there is a considerable
amount of samples for which judging between labels or
quality is ambiguous. It will be examined whether a
more elaborate distinction in, e.g. INFERIOR (shape,
segmentation) or AMBIGUOUS (shape, label) is re-
quired.

4. Verifying words

The procedure described above was tested on three
character sets. The same procedure is now being used
for verifying the other character sets 1d, 2 and 3. In or-
der to semi-automatically verify the word and text cate-
gories 6, 7 and 8, a more elaborate procedure is required.



Although we have not completed the word and text ver-
ification procedure, the approach that is currently being
implemented is described briefly below.

In word recognition of unknown trajectories contain-
ing (X,Y,Z) coordinates, an approach that is often fol-
lowed is to find proper character segmentation points
and to generate a character hypothesis lattice of possi-
ble word outcomes. The hypothesis space can become
very large, but is restricted by the size of the lexicon,
which is used to prune irrelevant character paths from
the lattice. In the case of word verification, the lexicon
contains only one word. In the word verification proce-
dure, the word recognizer will first try to find the char-
acter paths that match the word label. If this does not
succeed, the word will be rejected. If it does succeed,
one or more character paths will be contained in the lat-
tice. In the second stage, the trajectories of subsequent
characters in a path will be verified as described in the
character verification procedure. If all characters in a
path are accepted, the word can be accepted. If one of
the characters in a path cannot be accepted with suffi-
cient confidence, the word must be rejected.

We have performed experiments with this approach,
by using the velocity-based segmentation algorithm de-
scribed in [6]. The method works quite well, but is
restricted to fluent handwriting. Unfortunately, not all
words in the UNIPEN database confirm to the required
temporal characteristics that are needed to perform seg-
mentation on points of minimal velocity. In particu-
lar, some data are acquired through mice or tablets with
a low temporal resolution. Therefore, our current ef-
forts are targeted on implementing other segmentation
schemes, like those based on points of maximum curva-
ture or Y-extrema. The current word verifier has a yield
of 91% with very low error rates. However, these num-
bers have to be sustained in further experiments.

5. Conclusions

This paper presents a procedure for detecting and
solving errors present in the UNIPEN devset. The proce-
dure is currently being applied to all character sets from
the database. The goal of this work is (i) to remove
unrecoverable labeling and segmentation errors, (ii) to
correct labels and segmentations for cases where this is
possible, and (iii) to review the quality of UNIPEN seg-
ments.

It is shown that by using classifier combination
schemes, a large portion of the data samples can be au-
tomatically checked, while keeping the remaining error
margin well within a respectable 1% range. The samples
that are rejected by the classifier combination have been
checked manually, resulting in a number of ambiguous

cases that need to be further investigated.
It has been debated that in particular the ambigu-

ous cases or cases with bad quality present problems
for handwriting classifiers and that rather than remov-
ing these samples from the database, a more elaborate
qualification scheme is required.

Our current efforts are targeted on finalizing the veri-
fication process for the remaining categories and further
processing samples that have not been decided upon.
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